Quantum lens spaces and graph algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Lens Spaces and Graph Algebras

We construct the C∗-algebra C(Lq(p;m1, . . . ,mn)) of continuous functions on the quantum lens space as the fixed point algebra for a suitable action of Zp on the algebra C(S2n−1 q ), corresponding to the quantum odd dimensional sphere. We show that C(Lq(p;m1, . . . ,mn)) is isomorphic to the graph algebra C∗ ( L (p;m1,...,mn) 2n−1 ) . This allows us to determine the ideal structure and, at lea...

متن کامل

Quantum Lens Spaces and Principal Actions on Graph C-Algebras

We study certain principal actions on noncommutative C-algebras. Our main examples are the Zpand T-actions on the odd-dimensional quantum spheres, yielding as fixed-point algebras quantum lens spaces and quantum complex projective spaces, respectively. The key tool in our analysis is the relation of the ambient C-algebras with the Cuntz-Krieger algebras of directed graphs. A general result abou...

متن کامل

Graph Spaces and 1-free Boolean Algebras

Let X denote an arbitrary second-countable, compact, zero-dimensional space. Our main result says that A' is a graph space, i.e., homeomorphic to the space of all complete subgraphs of a suitable graph. We first characterize graph spaces in terms of the Boolean algebras of their clopen subsets. Then it is proved that each countable Boolean algebra has the corresponding property. As a corollary ...

متن کامل

Graph Algebras for Quantum Theory

We consider algebraic structure of Quantum Theory and provide its combinatorial representation. It is shown that by lifting to the richer algebra of graphs operator calculus gains simple interpretation as the shadow of natural operations on graphs. This provides insights into the algebraic structure of the theory and sheds light on the combinatorial nature and philosophy hidden behind its forma...

متن کامل

- Algebras as Compact Quantum Metric Spaces

Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We show that if G is a hyperbolic group and if l is a word-length function on G, then the topology from this metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2003

ISSN: 0030-8730

DOI: 10.2140/pjm.2003.211.249